A SMART of project workshop CAD RISK PREDICTION AND STRATIFICATION: THE ICT APPROACH

SMARTool Genomics (and transcriptomics) for ATS risk prediction

Moritz Schütte, Alacris Theranostics GmbH, Berlin

Tuesday 6th November 2018

CNR Research Area Campus Building A, Room 27 via Moruzzi, 1 Pisa - Italy

SMARTool Genomics and transcriptomics data set

Exome: 264 RNA: 265

CAD annotation: 259

Goal 1: provide curated data as input for stratification algorithm

Goal 2: investigate CAD biology

SMARTool Genomics: Whole-exome sequencing

Coverage of 201,121 targets on 20625 genes, covering a total of 62 Mio bases Example of coverage on Exons (https://software.broadinstitute.org/software/igv/)

- + Detection of variants (SNPs + indels) in the target regions
- + Copy-number polymorphisms by coverage comparison across the cohort
- Variants outside target regions (e.g. intronic, promoter, regulatory regions)

SMARTool Genomics: Whole-exome sequencing

- median number of variants per sample: 29,228
- possible GWAS-type analysis for novel associations (limited by small sample number)

How to use the data for the stratification algorithm?

Polygenic risk score for CAD

Khera 2018, Nat Gen:

- Providing CAD risk weights for variants
- Cumulative risk as polygenic score

SMARTool Genomics: Copy-number changes

Recurrent chromosomal gains/losses across the SMARTool cohort

SMARTool transcriptomics data set: RNAseq

RNAseq:

- Higher dynamic range in RNAseq than microarrays
- no probes required, selection by polyA-tails
- gene expression of virtually all coding/long non-coding genes

Types of Analysis:

- gene expression
- differential gene expression
- pathway enrichment/gene signatures

SMARTool transcriptomics data set

Differential gene expression, example of extremes:

- ❖ no CAD (N=35) vs severe CAD (N=53)
- GO enrichment of differentially expressed genes (msigDB)

Enriched in NO CAD (142 Genes)
GO_HUMORAL_IMMUNE_RESPONSE_MEDIATED_BY_CIRCULATING
_IMMUNOGLOBULIN
GO_COMPLEMENT_ACTIVATION
GO_ADAPTIVE_IMMUNE_RESPONSE
GO_HUMORAL_IMMUNE_RESPONSE
GO_IMMUNE_RESPONSE
GO_B_CELL_MEDIATED_IMMUNITY
GO_PROTEIN_ACTIVATION_CASCADE
GO_B_CELL_RECEPTOR_SIGNALING_PATHWAY
GO REGULATION OF IMMUNE SYSTEM PROCESS
GO LYMPHOCYTE MEDIATED IMMUNITY

Enriched in severe CAD (119 genes)
00 11 11 11 11 11 11 11 11 11 11 11 11 1
GO_IMMUNE_SYSTEM_PROCESS
GO_IMMUNE_RESPONSE
GO_DEFENSE_RESPONSE
GO_RESPONSE_TO_BACTERIUM
GO_DEFENSE_RESPONSE_TO_BACTERIUM
GO_RESPONSE_TO_BIOTIC_STIMULUS
GO_DEFENSE_RESPONSE_TO_OTHER_ORGANISM
GO_DEFENSE_RESPONSE_TO_FUNGUS
GO_DISRUPTION_OF_CELLS_OF_OTHER_ORGANISM
GO_ANTIMICROBIAL_HUMORAL_RESPONSE

SMARTool transcriptomics data set

Single marker: Example of a gene correlating with disease stage

SMARTool transcriptomics data set

SMARTool: smaller cohort but more genes due to RNAseq

Summary & Outlook

Summary

- Genomic, transcriptomic and clinical data for 252 patients
- Genomic variants and copy-number changes to determine Genetic risk (polygenic score)
- Gene expression analysis for marker genes and altered Pathways/processes

Outlook

- Data will be used in the stratification algorithm
- Development of diagnostic RNAseq panel

Acknowledgements

Alacris Theranostics

Lesley Ogilvie Christine Voigt Tatiana Borodina Bodo Lange Sequencing lab

SMARTool consortium, coordinated by

Silvia Rocchiccioli Gualtiero Pelosi Oberdan Parodi

Simulation Modeling of coronary ARTery disease: a tool for clinical decision support