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Key points

• Clinical decision support ensures consistent 
and appropriate resource utilization

• Big data requires novel statistical approaches
to enable correlation of health information
across multiple domains

• Healthcare AI needs clean data

• The ultimate goal is to achive better
diagnostics and prognostication



Decision support systems

• Overutilization of imaging services can drive 
up healthcare costs and increase population
health risk by causing needless subsequent
evaluation of false positive and incidental
findings

• Underutilization can also drive up healthcare
costs and cause patient harm by leading to
missed diagnoses and delayed treatments

Brink et al. Eur Radiol (2017) 27:3647–3651 

The goal DSS is to ensure consistent and 
appropriate resource utilization, thereby 

optimizing health benefits while reducing costs 



Decision support systems

Brink et al. Eur Radiol (2017) 27:3647–3651 

Guiding physicians and even patients to appropriate 
imaging examination

Reducing variations in descriptions of findings and 
recommendations (diagnostic testing and therapies). 

Combine data of multiple domains to implement 
precision medicine in daily practice  



Traditional vs ML methods

• Traditional methods of healthcare decision-
support systems required experts to provide
the system with rules and guidelines in order
to draw conclusions and insights

• With machine learning, we can train the
system to deliver cognitive health insights by
supplying the data and outcomes (cognitive
assistants)
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Regression
• Small sample sizes
• Few predictors
• Linear 

associations
• Few outliers



Big data

• Volume refers to the scale of the data

• Variety refers to the degree to which the data is structured or unstructured

• Velocity refers to the speed at which data is produced and collected

• Veracity refers to the data quality certainty. 

• The “big” part of big data refers to volume, variety and velocity.

Big data in health care encompasses a wide range of domains including genomics, 
proteomics, phenotype information, and the electronic health record and medical
imaging, inclusive of radiology, pathology, cytology, and laboratory medicine

“Big data goes beyond size and volume to encompass such 
characteristics as variety, velocity, and with respect specifically to 

health care, veracity”



Problems with current concepts

Regression
• Small sample sizes
• Few predictors
• Linear associations
• Few outliers

• New CVD risk scores with over 400 000 patients1

• Digital data is projected to reach 35 zettabytes 
(35 trillion gigabytes) by 2020, a 44- fold 
increase from 2009 

• Google used 46 864 534 945 data points to 
predict hospitalization outcomes2

• Nonlinear association of BMI with all-cause and 
cardiovascular mortality3

• Transition from population-based to precision 
medicine4

1: Pylypchuk et al. Lancet, 2018
2: Rajkomar et al. Nature Dig Med., 2018

3: Zaccardi et al. Diabetologia, 2017
4: Dainis et al. JACC Basic Transl Sci., 2018



Machine learning and AI technologies can identify

complex relations and patterns in data, revealing

insights that would otherwise remain hidden.

The use of AI promises better decision support for medical 
imaging, precision in diagnosis, and real-time correlation 

with other medical data



What is Artificial Intelligence (AI)?

Stuart Russell, Peter Norvig: Artificial Intelligence: A Modern Approach, Pearson Pub., 2009

Artificial Intelligence Natural Intelligence

Thinking Humanly
“The exciting new effort to make computers think ... machines with 
minds, in the full and literal sense.” (Haugeland, 1985)
“[The automation of] activities that we associate with human thinking, 
activities such as decision-making, problem solving, learning ...” 
(Bellman, 1978)

Thinking Rationally
“The study of mental faculties through the use of computational 
models.” (Charniak and McDermott, 1985)
“The study of the computations that make it possible to perceive,
reason, and act.” (Winston, 1992)

Acting Humanly 
“The art of creating machines that perform functions that require
intelligence when performed by people.” (Kurzweil, 1990)
“The study of how to make computers do things at which, at the
moment, people are better.” (Rich and Knight, 1991)

Acting Rationally 
“Computational Intelligence is the study of the design of intelligent
agents.” (Poole et al., 1998) 
“AI . . . is concerned with intelligent behavior in artifacts.” (Nilsson, 
1998)



Stuart Russell, Peter Norvig: Artificial Intelligence: A Modern Approach, Pearson Pub., 2009

Artificial Intelligence
Natural Language Processing

Computer vision

Knowledge representation

Machine learning

Automated reasoning

Robotics

Input

Thinking
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Medical data

Machine learning
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Examples of ML in cardiovascular imaging

Clinical data

Input data Conclusions



Clinical data + ML
• Importance of specific parameters 

are different for ML models
• ML provides a subtle improvement 

in prediction of cardiovascular 
events

ML significantly improves accuracy of 
cardiovascular risk prediction

6: Weng et al. PlosOne, 2017



Examples of ML in cardiovascular imaging

Clinical data
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Clinical imaging reports

ML significantly improves accuracy of 
cardiovascular risk prediction6



Clinical imaging reports + ML
• ML using clinical CCTA data outperforms existing

models for ACM
• ML using clinical and imaging reports outperforms

existing models to predict CVD events
• ML based algorithm can improve the integration

of CCTA derived plaque information to improve
risk stratification.

6: Weng et al. PlosOne, 2017
7: Motwani et al. EHJ., 2016

8: Ambale-Venkatesh et al. Circ-Res., 2017
9: van Rosendael et al. JCCT, 2018

ML using clinical and imaging data 
outperforms 5-year all cause mortality,

CVD outcomes and MI



Examples of ML in cardiovascular imaging

Clinical data

Input data Conclusions

Clinical imaging reports

Coronary vessels

ML significantly improves accuracy of 
cardiovascular risk prediction6

ML using clinical and imaging data outperforms 
5-year all cause mortality7,CVD outcomes8 and 
MI9

6: Weng et al. PlosOne, 2017
7: Motwani et al. EHJ., 2016

8: Ambale-Venkatesh et al. Circ-Res., 2017
9: van Rosendael et al. JCCT, 2018



Coronary vessels + ML
• Per-lesion and per-patient level, FFRML

showed a sensitivity of 79% and 90%
and a specificity of 94% and 95%,
respectively

• Per-lesion and per-patient level, FFRCFD

resulted in a sensitivity of 79% and 89%
and a specificity of 93% and 93%,
respectively

6: Weng et al. PlosOne, 2017
7: Motwani et al. EHJ., 2016

8: Ambale-Venkatesh et al. Circ-Res., 2017
9: van Rosendael et al. JCCT, 2018

10: Tesche et al. Radiology, 2018

FFRML algorithm performs equally in 
detecting lesion-specific ischemia when 

compared with FFRCFD



Examples of ML in cardiovascular imaging

Clinical data

Input data Conclusions

Clinical imaging reports

Coronary vessels

Radiomic parameters

ML significantly improves accuracy of 
cardiovascular risk prediction6

ML using clinical and imaging data outperforms 
5-year all cause mortality7,CVD outcomes8 and 
MI9

FFRML algorithm performs equally in detecting 
lesion-specific ischemia when compared with 
FFRCFD

10

6: Weng et al. PlosOne, 2017
7: Motwani et al. EHJ., 2016

8: Ambale-Venkatesh et al. Circ-Res., 2017
9: van Rosendael et al. JCCT, 2018

10: Tesche et al. Radiology, 2018



„Radiomics is the process of extracting numerous quantitative features 
from a given region of interest to create large data sets in which each

abnormality is described by hundreds of parameters.”

Radiomics

Machine learning

Kolossváry et al. Jour Thor Img. 2018
Kolossváry et al. Circ Card-Img. 2017

Data mining combined with radiomics, in which images are converted into mineable data 
and then correlated with genomic, clinical and other data sets for decision support , offers 
the option to discover new imaging features not detectable through human observation. 

Gillies et al. Radiology 2016
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Radiomics + ML

• Radiomics-based machine
learning model outperformed
traditional and PAP – schemes
to identify advanced lesions
based-on histology

• Radiomics-based machine
learning model can classify
coronary CTA cross-sections to
the corresponding histological
category with moderate
accuracy

Radiomics-based machine learning 
outperforms conventional assessment to 

identify advanced lesions

Kolossváry, Maurovich-Horvat et al. Submitted., 2018



Kolossvary / Park / Lee / Koo / Maurovich-Horvat submitted

Can CT identify metabolic plaque activity? 

Patients (n=25)

Age (year) 62 [IQR: 59-69]

Male (n, %) 23 (92)

Body mass index (kg/m2) 25 [IQR: 22-27]

Cardiovascular risk factors

Hypertension (n, %) 12 (48%)

Diabetes mellitus (n, %) 8 (32%)

Hypercholesterolemia (n, %) 18 (72%)

Current smoker (n, %) 6 (24%)

Lesion Characteristics (n=44)

Lesion locations

Left main to LAD (n, %) 34 (77.3)

LCx (n, %) 3 (6.8)

RCA (n, %) 7 (15.9)

Quantitative CT angiography

Reference vessel diameter (mm) 3.3 [IQR: 2.9-3.6]

Minimal lumen diameter (mm) 1.7 [IQR: 1.4-2.3]

Diameter stenosis (%) 45 [IQR: 33-52]

Lesion length (mm) 11.2 [IQR: 7.9-14.5]



Kolossvary / Park/ Lee / Koo / Maurovich-Horvat submitted

Metabolic vulnerability ≠ morphologic vulnerability



Pan Coronary Vulnerability

Maurovich-Horvat P et al, Nature Rev Cardiol. 2014

1.   Luminal narrowing

3.   Plaque morphology

2.   Plaque burden

4.   Ischemic myocardium

6.   Adverse hemodynamic characteristics

5.   Lesion specific ischemia

7.   Metabolic activity

Using AI to achieve precision phenotyping
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Healthcare AI needs clean data

• Healthcare data comes in so many different
formats.. medical records are a mess!

• Healthcare AI depends upon clean, organized, 
and well-categorized data sets, “garbage in, 
garbage out”

• The data must be verified and dated with the
identification of the responsible „owner” and 
it must be carefully defined and precisely
formatted. 



Structured and standardized reporting

The electronic health record is replete with inaccurate information, free text, 
conjecture, and assumptions. The health care vocabulary is imprecise; many terms
often considered synonymous, in fact, have definitions that merely overlap 

Coronary CTA structured and standardized 
reporting to generate clean data registry 

and clinical report



CCTA reporting



DSS in coronary CTA reporting

Kolossvary et al. Cardiovascular Diagnosis and Therapy 2017



CAD-RADS for acute chest pain
Coronary Artery Disease Reporting and Data System  

Degree of maximal coronary stenosis Interpretation 

CAD-RADS 0 0% ACS highly unlikely

CAD-RADS 1 1-24% ACS highly unlikely

CAD-RADS 2 25-49% ACS unlikely

CAD-RADS 3 50-69% ACS possible

CAD RADS 4 A – 70-99% or
B – Left main >50% or 3-vessel obstructive 
disease

ACS likely

CAD-RADS 5 100% (Total occlusion) ACS very likely

Modifiers

First modifier N (non-diagnostic)

Second modifier S (stent) 

Third modifier G (graft)

Fourth modifier V (vulnerability)

Modifier vulnerability

Positive remodeling

Low attenuation (<30 HU)

Spotty calcium

Napkin-ring sign

Cury et al. JCCT 2016



Szilveszter et al. JCCT 2017

Structured reporting platform improves CAD-RADS assessment

Structured reporting platform with automated calculation of 
the CAD-RADS score improves data quality and supports 

standardization of clinical decision making. 
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Team

Thank you!



GLOBAL Study

• Primary and secondary prevention of 
cardiovascular disease remains a significant 
medical and societal challenge.

• Personalized preventive strategies are needed 
(e.g.: biomarkers, imaging).

• Lack of biomarkers for atherosclerosis.
– There are markers for intermediate phenotypes and prognostic 

markers, but no diagnostic biomarkers for atherosclerotic 
plaques. 

Voros, Maurovich-Horvat et al. J Cardiovasc Comput Tomogr 2014:8(6); 442–451.



G3’s “GLOBAL” CLINICAL STUDY 
7,500 Subjects

SPECTRUM OF CORONARY DISEASE

Controls: ~3500 Subjects Cases: ~4000 Pts

G3: The Platform
Clinical Study to Big Data to Biomarkers and Targets

Voros, Maurovich-Horvat et al. J Cardiovasc Comput Tomogr 2014:8(6); 442–
451.



Patient level vulnerability

Voros S, Maurovich-Horvat P et al, JCCT 2014

DSS utilizing AI will incorporate multiomic
data to achieve personalized risk prediction


