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Aims

A machine learning based risk 
stratification model will be implemented 
by patient genotyping and phenotyping

Patient-specific CAD stratification

Models of site specific plaque growth and 
prediction will be implemented for the 

prediction of regions prone to plaque growth

CAD prognosis decision support

CAD diagnosis is based on semi-
automate 3D arterial reconstruction 
and non-invasive FFR measurement. 

Patient-specific CAD diagnosis 

All outcomes are integrated into 
a unified cloud based platform

Cloud based platform

A virtual angioplasty tool will be 
developed

Treatment decision support

SMARTool will deliver a microfluidic 
device for on-chip blood analysis 
usable in CDSS

Point-of-care testing



SMARTool Conceptual Architecture



SMARTool pre-imaging module (PIM)
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Aim

To design and develop a machine 
learning-based model effectively 
integrating multiple categories of 
biological non-imaging data 
towards precise risk stratification in 
coronary artery disease

To identify the most informative 
features refining the existing 
stratification scores with at least 2 
novel features 

To validate the risk stratification 
model on retrospective and 
prospective data annotated using 
CCTA



CAD Risk stratification general pipeline

Data Pre-processing

• Data cleaning

• Feature Ranking

Machine Learning

• Selection of ML classifier with best perfomarnce characteristics

• Linear and non-Linear algorithms

Model Optimization - Selection

• Hyperparameter optimization on the training set

• Sequential feature selection

Performance Evaluation

• Repeated 10-fold cross-validation



CAD Risk stratification specific pipeline for high 
dimensionality feature set

step1

Data
Pre-processing

step2 step3 step4

• Data views 
preparation

• Data cleaning

Normalization
procedure

• normalization 
application to 
all data views

Data views

• Demographics

• Biohumoral

• Genetic data

• Lipid profiles

Dimensionality 
reduction

• sparse least 
square 
algorithm 
(SPLS)

• Linear classifier

• 10-fold cross 
validation

Classification



Problem formulation

• In SMARTool 3 problem subcase has been defined
– Subcase 1 

• Class0: No CAD
• Class1:Obstructive CAD and Severe CAD

– Subcase 2 
• Class0: No CAD, minimal CAD
• Class1: Non-Obstructive CAD, Obstructive CAD and Severe CAD

– Subcase 3 
• Class0: No CAD, minimal CAD
• Class1: Non-Obstructive CAD
• Class2: Obstructive CAD and Severe CAD



Smartool follow-up dataset
• A very comprehensive dataset has been collected including: 

Data Groups

Demographics

Risk Factors

Biohumoral data

Inflammatory and Monocyte 
Markers

Omics Data

Symptoms data

Exposome data

dataset
The SMARTool dataset includes 263 subjects

The 210 subjects has genetic data

All of them are annotated from the SMARTool

Clinical experts



Statistical data analysis

Gene Expression Dataset (𝒑 = 𝟓𝟓𝟔𝟐𝟗)

The edgeR analysis identified 𝑝 = 283

differentially expressed genes.

Lipids Dataset (𝒑 = 𝟓𝟗) - 1-way ANCOVA

Statistically significant differences in 

Cer(d18:1/16:0), TG(54:2), TG(18:1/18:1/18:0) M, 

SM(36:2), SM(38:2), SM(40:2), SM(42:4), 

SM(42:3) lipids species between the groups, 

when adjusted for triglycerides and LDL (p < .01).

Exploratory data analysis
Heat map of the expression values (RPKM) of 

differentially expressed genes between groups



Evaluation of PIM Classification Performance

Input Method Accuracy Sensitivity Specificity PPV NPV

Age, Gender, Blood
Tests, Biohumoral
Data, Inflammatory 
Markers

Logistic regression 0.71±0.19 0.77±0.24 0.63±0.32 0.76±0.19 0.70±0.26

Linear discriminant analysis 0.73±0.17 0.77±0.20 0.68±0.34 0.82±0.17 0.65±0.31

Age, Gender, 
Differentially 
Expressed Genes

Sparse partial least squares, 
Logistic regression

0.85±0.14 0.90±0.14 0.77±0.33 0.88±0.16 0.87±0.19

Sparse partial least squares, 
Linear discriminant analysis

0.79±0.10 0.86±0.13 0.68±0.26 0.83±0.13 0.80±0.19

Differentially 
Expressed Genes,
Lipids

Sparse generalized canonical 
correlation analysis, Linear 
discriminant analysis

0.78±0.10 0.80±0.16 0.75±0.25 0.84±0.14 0.77±0.18

Evaluation Procedure: 10-fold cross validation accompanied by an internal 10-fold cross-validation for 
hyper-parameter tuning .



Classification performance

Sparse PLS of demographics and gene expression data

Evaluation Procedure: 10-fold cross validation accompanied by an internal 10-fold cross-validation for hyper-parameter tuning .

Selected variables in each of the 3 components (𝑲 = 𝟑)



Output  visualization 

Representation of featuresRepresentation of individuals

Sparse Generalized Canonical Correlation Analysis of Lipids and Genes



Output visualization

Contribution in component I Contribution in component II
Genes GenesLipids Lipids

Sparse Generalized Canonical Correlation Analysis of Lipids and Genes



SMARTool plaque risk module (PRM)

Several metrics will be automatically 
calculated and used for the estimation of 
plaque risk.

3D reconstruction of coronary 
arteries and plaque

Diagnosis of severity will be estimated 
using also the non-invasive SmartFFR 
calculation

SmartFFR calculation

Treatment decision support is provided 
through a virtual stenting application

Virtual stenting

1

2

3



3D Reconstruction and plaque characterisation tool

Aim: to provide a user friendly semi-automate tool for the 3D reconstruction of coronary arteries, calcified 
and non-calcified plaques 

• Several metrics are provided:
Length, Lumen area and 
perimeter, Outer wall area and 
perimeter, Plaque burden, 
calcified plaque area and volume, 
Non-calcified plaque area and 
volume
• The metrics are provided per 

segment, but also for each 2D 
slice 



Segmentation and 
reconstruction is 
achieved using a 3D 
level set approach

A deconvolution 
algorithm is 

developed to remove 
the blooming effect 

artifact

Weight functions 
are estimated for 
the lumen, outer 
wall and calcified 
plaque

Preprocessing using 
Frangi’s vesselness 

filtering

Centerline extraction 
is performed 
implementing a 
Multistencil Fast 
Marching Method

CTCA images 
acquisition Step 1

Step 2

Step 3 Step 4

Step 5

Step 6

3D Reconstruction and plaque characterisation tool

1 V. I. Kigka et al., Biomedical Signal Processing and Control, 2018
2 V. I. Kigka et al., World Congress on Medical Physics and Biomedical Engineering, 2018 



Pre-processing and blooming effect removal

Preprocessing

Blooming effect removal

• Contrast enhancement & image thresholding, which allows the identification of the vessel
• Implementation of  Frangi Vesselness1,2 filter, which permits detection of structures which 

correspond to coronary vessels

CTA output image Deblurred image

Improvement of the visualization of small high-density objects and blooming effect limitation

Implementation of Deconvolution by Richardson Lucy Algorithm on high intensity regions

Approximation of system’s PSF using a Gaussian kernel

1Manniesing R., Information Processing in Medical Imaging: 19thInternational Conference, 2005.
2Frangi RF, Lecture Notes in Computer Science. Springer-Verlag, 1988.
3A. Castillo, SPIE, 2015.



Centerline extraction and weight function estimation

Identification of 
the starting and 
ending point of 

the vessel

Calculation of a 
cost function1

based on the 
lumen weight and 
the vessel weight

Implementation of 
Multistencil Fast 

Marching Method2

to calculate the 
shortest distance 

from a list of 
points to all other 
pixels in an image 

volume 

Weight function estimation 

• Calculation of  membership functions that are all adapted to the mean vessel intensity across the centerline, assuming 
that this corresponds to the mean lumen intensity.

• For the lumen a generalized bell-shaped membership function is used and for the outer wall and the plaques a 
sigmoidal function.

1Metz C., Med Phys, 2009.
2Bærentzen J. A., Informatics and Mathematical Modelling, DTU, 2001.

Centerline Extraction



Segmentation

Lumen Segmentation

4) Implementation of Sparse Field Algorithm 

3) Calculation of the speed function

2) Approximation of an initial binary image

1) Update of lumen intensities 
• Implementation of an extension of the active contour models1

• Implementation of a level set segmentation approach that 
incorporates a prior shape2, aiming to segment an object 
whose shape is similar to the given prior shape 

• For the outer wall, the same level set approach is implemented 
as for the lumen segmentation.

• For the calcified plaques, the level set is applied in
the ROI of the wall.

• For the non-calcified plaques, a dynamic threshold-based 
technique is applied in the ROI of the wall.

Plaques Segmentation

Outer Wall Segmentation

1Chan T.F., IEEE Transactions on image processing, 2001.
2Chan, T. F., (CVPR'05). 2005.
3Cremers D., International Conference on
Scale-Space Theories in Computer Vision, 2003.

4Chan, T. F., (CVPR'05). 2005. IEEE.
5Whitaker R.T., International journal of
computer vision, 1998

Segmentation approach



3D geometric models reconstruction

1Lorensen W. E., ACM siggraph computer graphics, 1987.

3D Surface construction

• Computation of an isosurface data from the different extracted φ.
• Implementation of Marching Cubes algorithm, proposed by Lorensen et  

al.1 to construct 3D surfaces for the lumen, outer wall and CP plaques.



Validation results

Validation using IVUS modality
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Validation results

Validation using VH-IVUS modality- Plaque Characterization



FFR - Background

Fractional Flow Reserve (FFR) obtained by Invasive Coronary Angiography (ICA) is 
an established index for assessing the functional significance of a coronary lesion 
and making decisions for coronary revascularization

The main drawbacks of the CCTA-based FFR (FFRCT) methods are their 
computational lengthiness and their need for remote core-laboratory analysis

More recently, interrogation of functional significance of coronary lesions 
detected by CCTA has also become feasible through computation of CT-derived 
fractional flow reserve (FFRCT)

Coronary computed tomography angiography (CCTA) is the reference standard 
for non-invasive evaluation of the coronary anatomy 



SmartFFR calculation

For the outlets, we perform a transient 
blood flow simulation assuming a 

developing laminar flow that begins 
from 0 ml/s and reaches a maximum 

of 8 ml/s for a total time of 1 sec 
divided into timesteps of 0.25 sec

We apply Murray’s law for the 
bifurcation to determine how 
the flow is divided for the two 

branches

Regarding the inlet, a universal 
average aortic pressure value of 

100 mmHg is applied

The first step is to define the necessary boundary conditions for the calculation



SmartFFR calculation

We construct the patient-specific Pd/Pa 
curve in order to calculate the final 

smartFFR value

SmartFFR is computed by calculating the 
AUC of the Pd/Pa curve of each branch 
for a maximum universal flow of 4 ml/s 

and normalizing it to the respective AUC 
of the ideal healthy artery

The second step is to calculate the SmartFFR



SmartFFR enhancements over vFAI

SmartFFR uses a transient increasing laminar flow 
simulation 

SmarSmartFFR uses only CFD (Pd/Pa calculated in 
each timestep) in order to construct the Pd/Pa vs. 
flow curve by connecting the calculated values 
through a smoothed-spline

The AUC is calculated through trapezoidal 
numerical integration of the curve

SmartFFR is calculated in bifurcating arteries using 
Murray’s law to divide flow and apply the 
calculated values as outlet boundary conditions

It is faster and can be applied on more than two 
branches simultaneously 

As an inlet, the patient-specific average aortic 
pressure will be applied

1

2

3

4

5

6

vFAI uses two separate steady state blood flow 
simulations 

It simulates a flow during rest and under stress

vFAI uses the theoretical generalized equation to 
construct the Pd/Pa vs. flow curve

It is then calculated by integrating the 
aforementioned equation in its final form

vFAI is only applicable on segments

20 sP f Q f Q   

1

2

3

4
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Validation

 For the validation of the SmartFFR, we used 189 vessels of 161 patients

 Standard per-protocol techniques were used for the ICA acquisition with multiple 

projections. FFR was invasively measured after the intravenous administration of 

140 μg/kg/min of adenosine

 54 vessels (28.1%) presented with a pathologic FFR value (i.e. ≤0.80)

 From the 189 vessels, 111 were Left Anterior Descending arteries (LAD), 53 were 

Right Coronary Arteries (RCA) and 25 were Left Circumflex (LCx)



Validation

Regression plot comparing 
the two methods

ROC curve showing the diagnostic 
performance of SmartFFR

Diagnostic performance of SmartFFR

FFR≤0.80

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) TP TN FP FN

smartFFR ≤ 
0.82

88.9 92.6 87.4 74.6 96.7 50 118 17 4



SmartFFR conclusions

SmartFFR(LCx)=0.95

SmartFFR(LAD)=0.49

• The SmartFFR is provided for the whole
reconstructed artery

• It is also provided in relation to the arterial
stenosis by just selecting the region of
interest (two yellow dashed lines below)

• High correlation and accuracy is observed
for SmartFFR compared to non-invasive FFR
measurements (accuracy=88.9)



PREDICTION study

Low ESS was independently associated 
with disease progression
Large plaque burden and low ESS 
predicted with 41% accuracy worsening 
lumen obstruction requiring PCI 

PROSPECT-CT

The accuracy of the model of disease 
progression created from the predictors: 
Low ESS, plaque and burden, fibrofatty 
tissue component and fibrotic tissue was 
59.0%. 

FFR and prediction or diagnosis

Invasive FFR or even CCTA-based 
virtual FFR increases the 

predictability accuracy for 
diagnostic purposes 

IBIS-4 – ESS sub-study

The accuracy of ESS and the 
IVUS-derived plaque 

characteristics in predicting 
disease progression has area 

under the curve: 0.829

CCTA and prediction

Morphological characteristics 
depicted at CCTA of 3,158 patients 

were independent predictors of ACS 
during a mean follow‐up of 3.9 years

PROSPECT study

Local low ESS provides 
incremental risk stratification of 
untreated coronary lesions in 
high-risk patients

Prediction of plaque progression and prognosis of CAD



State of the Art
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Blood flow in arteries
is modeled assuming
that blood is
Newtonian fluid and
the flow is laminar
and incompressible

Taylor et al.

Realistic arterial
geometries were used
for the simulations

Steinman et al. 

Low ESS was
associated with
regions with
atherosclerosis using
real patient’s data

Papafaklis et al.

A computational
model for LDL
transport was
presented using a
coronary arterial
geometry

Sun et al. 

A three pore model
was presented for LDL
transport modeling

Olgac et al.

The effect of several
pathologic conditions
to LDL transport was
modelled

Sakellarios et al. 

A multi-level plaque
growth model was
presented in a proof
of concept study

Sakellarios et al.

Several studies 
associate the low ESS 
and high LDL 
concentration to large 
datasets of patients

PREDICTION,
PROSPECT, IBIS

Beyond

Multi-level modelling 
will be implemented in 

large datasets for 
accurate prediction of 

disease progression



Methodological approach

Prediction of disease 
progression

Modelling 
blood 
flow

SmartFFR 
calculation

LDL transport 
modeling

Plaque 
growth 

modeling

Predictive 
models

Estimation 
of risk 
score

Step 1

3D reconstruction of coronary 
arteries
Lumen and outer wall are reconstructed using 

SMARTool’s software

Step 2

Registration of CCTA time points

Baseline and follow-up examinations are registered 

using bifurcations, the centerline length and calcified 

objects in order to examine the same segments and 

assess the progression accurately

Step 3

Blood flow modeling

The baseline geometries are used for modeling blood 

flow to estimate the ESS

Step 5

LDL transport modeling

Patient’s serum LDL concentration is used to estimate 

the LDL accumulation in the arterial wall

Step 6

Plaque growth modeling

A time-dependent plaque growth is employed 

simulating the inflammation, the foam cells formation, 

the smooth muscle cells and the development of 

plaque

Step 7

Development of predictive models

Predictive models are developed using two different 

approaches:

i) A risk score is calculated using odds ratios from the 

independent predictors of disease progression

ii) Machine learning models are developed

Step 8

Estimation of risk score

The results of the predictive models will be interpreted 

as risk scores for the prognosis and prediction of 

plaque growth

Step 4

SmartFFR calculation

The SmartFFR is calculated using a novel approach and 

can be calculated for the whole segment



Predictive models based on regression analysis

STEP 1 STEP 2

STEP 4 STEP 3

Risk score is 
estimated using the 

odds ratio from a 
binary logistic 

analysis

Baseline and follow-up 
models are divided to 0.5 
mm and the morphological 
and computational 
features are then extracted 
by 3mm

Linear regression 
analysis is performed 
to identify potential 
correlations

Computational modeling
is performed at the 

baseline reconstructed 
arteries

The statistical models include the 
following features:
• Risk factors
• Serum LDL, HDL, cholesterol, 

triglycerides
• Lumen area, plaque area, plaque 

burden
• ESS, LDL accumulation, areas of 

low ESS (<1.5 Pa)

The following assumptions are made:
• The variables of lumen area, 

plaque area and plaque burden 
are transformed to binary using 
their median

• The progression of disease is 
defined as 15% lumen area 
reduction or 25% plaque area 
increase or 25% plaque burden 
increase



Results

Accuracy Sensitivity Specificity PPV NPV
Positive 
likehood 

ratio

Negative 
likehood 

ratio

Decreased lumen area at 
follow-up

0.795 0.772 0.821 0.826 0.766 0.941 0.277

Increased plaque area at 
follow-up

0.691 0.663 0.725 0.747 0.638 0.914 0.464

Increased plaque burden at 
follow-up

0.652 0.662 0.644 0.588 0.713 1.028 0.525

Lumen area progression 0.685 0.381 0.874 0.652 0.695 0.436 0.708

Plaque area progression 0.675 0.561 0.750 0.594 0.724 0.748 0.585

Plaque burden progression 0.673 0.501 0.842 0.758 0.632 0.595 0.592



Results

ROC curve of predictive model for plaque 
burden increase

AUC=0.740, 
P<0.0001

ROC curve of predictive model for plaque 
area increase

AUC=0.698, 
P<0.0001

ROC curve of predictive model for lumen 
area decrease

AUC=0.725, 
P<0.0001



Predictive models based on machine learning

CAD risk can be assessed by linear regression models of clinical, 
laboratory and anthropometric features, assuming linearity as well as 
time-invariance of the underlying input-output relationships1. 

Clinicians attempted to predict CAD status based on established risk 
factors (age, total cholesterol, smoker etc.), implementing statistical 
analysis techniques.

In this approach, we utilize the established CAD risk factors and image 
based geometrical risk factors to predict CAD status in a follow-up step, 
using machine learning approaches.

1Damen, J.A., et al., BMJ, 2016.
2Weng, S.F., et al., PLOS ONE, 2017.



State of the art

Machine 
Learning Based 

Techniques

Exarchos et al.1 implemented typical classification schemes (BN, NB, ANN, SVM), using 
demographics, clinical data, several biochemical variables, monocytes and adhesion 
molecules, to predict the number of vessels’ stenosis, the atherosclerosis progression, as 
well as a hybrid score corresponding to the severity of the disease

Alizadehsani et al.2 utilizes demographics, clinical data, echocardiography data and 
54 features of laboratory variables to predict the status of CAD, applying a support 
vector machine (SVM) algorithm with kernel fusion.  

Weng et al.3 aimed to predict a fatal or non-fatal cardiovascular event over the ten 
years, using typical classification algorithms.

1Exarchos K. P., et al., IEEE JBHI, 2015.
2Alizadehsani R. et al., Knowledge-Based Systems, 2016.
3Weng, S.F., et al., PLOS ONE, 2017.



State of the art

1Zhu H. et al., International journal of cardiology, 2009.
2Friedman M.H. et al., Atherosclerosis, 1983.

Concept of geometrical risk factors

Atherosclerosis is non-
uniformly distributed in the 

coronary vasculature, 
considering both the different 
human coronary arteries and 

the different sites of the 
coronary vessel1.

The conventional risk factors 
cannot explain this 

phenomenon, since their 
influence corresponds to the 

entire coronary vessel

This investigation has led to 
the concept of geometric risk 

factors for the evolution of 
atherosclerosis, having a 

significant influence on the 
mechanical environment of 
the coronary arterial wall2.



Problem Formulation-CAD Prognosis

Class 0

No CAD

Class 1

CAD

Prognosis of CAD approach



Features dataset

Imaging Risk Factors Biochemical

Degree of Stenosis Age Alanine Aminotransferase Total Cholesterol

Minimal Lumen Area Gender Alkaline Phosphatase Triglycerides

Minimal Lumen Diameter Family History CHD Aspartate Aminotransferase Uric Acid

Plaque Burden Hypertension Creatinine Cardiac troponin

CP Volume Diabetes Gamma Glutamyl  Transferase HDL total cholesterol ratio

NCP Volume Dyslipidemia Glucose Statins

Count of CP Current Smoking HDL ICAM1

FFR index Past Smoking Reactive Protein VCAM1

Obesity Interleukin

Metabolic Syndrome LDL

Current symptoms Leptin
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Imaging-based 
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SmartFFR-based 
Classifier

Risk Factors-based 
Classifier

Biochemical-based
Classifier

Multi-type 
Classifier
(Majority 

Weighted Voting 
Algorithm)



Results
Type of Classifier Prediction Algorithm Accuracy Fusion of Classifiers

Imaging-based 

Classifier
Random Forest 0.79

Accuracy: 0.85

SmartFFR-based

Classifier
Support Vector Machine 0.67

Risk Factors-based

Classifier
Logistic Regression 0.68

Biochemical-based

Classifier

Random Forest
0.64



Problem Formulation-CAD progression

Prediction of CAD progression

Class 0

No Progression

Class 1

Progression



Methodology
INPUT

Preprocessing
Feature Selection

Ranking Techniques

Classification

Model Selection

Imaging

Geometrical 
Metris for each 

artery 
(LAD,LCX,RCA) 

Degree of 
Stenosis

Minimal Lumen 
Area

Minimal Lumen 
Diameter

Plaque Burden                         
CP Volume

NCP Volume
Count of CP
FFR for each 

artery (LAD, LCX, 
RCA) 

Risk factors

Age
Gender 

Family History 
CHD

Hypertension
Diabetes

Dyslipidemia
Current 
Smoking

Past Smoking
Obesity

Metabolic 
Syndrome

Current 
symptoms

Biochemical

Alanine Amino-
transferase, Alkaline, 

Phosphatase, 
Aspartate 

Aminotransferase
Creatinine, Gamma 

Glutamyl  
Transferase

Glucose, HDL, 
Reactive Protein, 
Interleukin, LDL, 

Leptin, Total 
Cholesterol

Triglycerides
Uric Acid, Cardiac 

troponin, 
Statins

ICAM1, VCAM1



Results

Input Feature Selection Prediction Algorithm Accuracy

38 Features

Ranking Techniques 

(Hyperparameter 

optimization on the 

training set)

Support Vector Machine 0.63

Logistic Regression 0.64

Artificial Neural Networks 0.61

Decision Trees (J48) 0.67



The concept of prediction models based on 
plaque growth modeling in SMARTool

• A novel model for plaque growth
prediction

• It combines computational modeling
and machine learning in order to
predict regions which are prone to
disease evolution

• The concept is based on the
assumption that any additional level
of information will increase the
prediction accuracy



Atherosclerotic plaque volume

Methodological approach of plaque growth in SMARTool



Model Assumptions

Blood is considered as an incompressible homogenous fluid.

LDL, Oxidized LDL, Monocytes, Macrophages, Foam cells, Contractile and Synthetic Smooth Muscle cells, 
cytokines and collagen are considered substances that does not affect blood flow.

Arterial wall is considered as a homogenous porous material.

Plasma is considered to flow into the arterial wall.

The removal of plasma into the arterial wall doesn’t change the blood’s density and viscosity.

Endothelium layer is considered as a thin interface, through which flow rates are regulated by the Kedem-
Katchalsky equations.

The osmotic pressure across the endothelium layer is neglected.



Model Analysis
Blood flow & substances’ concentration in the lumen 

 Blood flow is modeled as in the previous model but now time changes are
considered.

 LDL, HDL and monocytes/macrophages concentration equations now consider time
changes as well.
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Model Analysis
Plasma flow & substances’ concentration in the arterial wall 1/4

 Blood flow is modeled as in the previous model but now time changes are considered.

 The LDL, HDL and monocyte concentrations are calculated based on the equations [1,2]:

 For every cell, the advection term is disregarded, due to their size that does not allow the 
advection movement in a porous domain.                                              

𝜌𝛾
𝜕𝑐𝐻𝐷𝐿
𝜕𝑡

+
𝜕

𝜕𝑥𝑖
𝜌 𝑲 ∙ 𝑼 𝑗𝑐𝐻𝐷𝐿 = 𝜌𝐷𝐻𝐷𝐿

𝜕

𝜕𝑥𝑖
𝑲 ∙

𝜕

𝜕𝑥𝑗
𝑐𝐻𝐷𝐿 −𝐻𝐷𝐿𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝜌𝛾
𝜕𝑐𝐿𝐷𝐿
𝜕𝑡

+
𝜕

𝜕𝑥𝑖
𝜌 𝑲 ∙ 𝑼 𝑗𝑐𝐿𝐷𝐿 = 𝜌𝐾𝑙𝑎𝑔𝐷𝐿𝐷𝐿

𝜕

𝜕𝑥𝑖
𝑲 ∙

𝜕

𝜕𝑥𝑗
𝑐𝐿𝐷𝐿 + 𝑟𝐿𝐷𝐿𝑐𝐿𝐷𝐿

[1] A. I. Sakellarios, et al., 2013, Journal of Physiology-Heart and Circulatory Physiology, vol. 304, pp. H1455-H1470, Jun 2013.
[2] M. Cilla et al, Journal of the Royal Society Interface, vol. 11, Jan 6 2014

𝜌𝛾
𝜕𝑐𝑚
𝜕𝑡

+
𝜕

𝜕𝑥𝑖
𝜌 𝑲 ∙ 𝑼 𝑗𝑐𝑚 = 𝜌𝐷𝑚,𝑝𝑙𝑎𝑠𝑚𝑎

𝜕

𝜕𝑥𝑖
𝑲 ∙

𝜕

𝜕𝑥𝑗
𝑐𝑚 − 𝑑𝑚𝑐𝑚 −𝑚𝑑𝑐𝑚

Differentiation 

into 

macrophages

Apoptosi

s



Model Analysis

𝛾
𝜕𝑐𝑐
𝜕𝑡

+
𝜕

𝜕𝑥𝑖
𝜌 𝑲 ∙ 𝑼 𝑗𝑐𝑐 = 𝜌𝐷𝑐

𝜕

𝜕𝑥𝑖
𝑲 ∙

𝜕

𝜕𝑥𝑗
𝑐𝑐 − 𝑑𝑐𝑐𝑐 + 𝑑𝑟𝑐𝑂𝑥𝐿𝐷𝐿𝑐𝑀

Plasma flow & substances’ concentration in the arterial wall 2/4

 The Macrophage, Cytokine, Oxidized LDL concentrations are calculated based on the
equations:

 The convection and diffusion terms of cytokine concentration are disregarded, because
cytokines are considered to be retained in the macrophage membrane.

𝛾
𝜕𝑐𝑀
𝜕𝑡

+
𝜕

𝜕𝑥𝑖
𝜌 𝑲 ∙ 𝑼 𝑗𝑐𝑀 = 𝜌𝐷𝑀

𝜕

𝜕𝑥𝑖
𝑲 ∙

𝜕

𝜕𝑥𝑗
𝑐𝑀 + 𝑑𝑚𝑐𝑚 − 𝑘1𝑐𝑂𝑥𝐿𝐷𝐿𝑐𝑀

Degradation Production from 

OxLDL & 

macrophages

𝛾
𝜕𝑐𝑂𝑥𝐿𝐷𝐿
𝜕𝑡

+
𝜕

𝜕𝑥𝑖
𝜌 𝑲 ∙ 𝑼 𝑗𝑐𝑂𝑥𝐿𝐷𝐿 = 𝜌𝐷𝑂𝑥𝐿𝐷𝐿

𝜕

𝜕𝑥𝑖
𝑲 ∙

𝜕

𝜕𝑥𝑗
𝑐𝑂𝑥𝐿𝐷𝐿 + 𝑟𝐿𝐷𝐿𝑐𝐿𝐷𝐿 − 𝑘2𝑐𝑂𝑥𝐿𝐷𝐿𝑐𝑀 − 𝐻𝐷𝐿𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛

Differentiation 

from monocytes

Differentiation 

into foam cells

LDL oxidation Uptake by 

macrophages



Model Analysis
Plasma flow & substances’ concentration in the arterial wall 3/4

 The Foam and Contractile Smooth Muscle cells (SMCs) concentrations are
calculated based on the equations:

•

 The convection and diffusion terms are disregarded due to the size of smooth 
muscle cells.

𝛾
𝜕𝑐𝑆𝑐
𝜕𝑡

+
𝜕

𝜕𝑥𝑖
𝜌 𝑲 ∙ 𝑼 𝑗𝑐𝑆𝑐 = 𝜌𝐷𝑆𝑐

𝜕

𝜕𝑥𝑖
𝑲 ∙

𝜕

𝜕𝑥𝑗
𝑐𝑆𝑐 − 1 + 𝑒

−𝑆𝑟𝑐𝑐
𝑐𝑐,𝑚𝑎𝑥 𝑐𝑆𝑐

𝛾
𝜕𝑐𝐹
𝜕𝑡

+
𝜕

𝜕𝑥𝑖
𝜌 𝑲 ∙ 𝑼 𝑗𝑐𝐹 = 𝜌𝐷𝐹

𝜕

𝜕𝑥𝑖
𝑲 ∙

𝜕

𝜕𝑥𝑗
𝑐𝐹 + 𝑘1𝑐𝑂𝑥𝐿𝐷𝐿𝑐𝑀

Differentiation 

from 

macrophages

Production of 

Synthetic 

SMCs



Model Analysis
Plasma flow & substances’ concentration in the arterial wall 4/4

 The Synthetic Smooth Muscle cells (SMCs) and collagen concentrations are calculated based
on the equations:

•

 The convection and diffusion terms are disregarded due to the size of smooth muscle cells.

 This model accounts only for the collagen secreted by the synthetic smooth muscle cells, as 
this is responsible for the development of atheroma plaque.

 Plaque is considered to consist of Foam cells, synthetic smooth muscle cells and collagen.

𝛾
𝜕𝑐𝐺
𝜕𝑡

+
𝜕

𝜕𝑥𝑖
𝜌 𝑲 ∙ 𝑼 𝑗𝑐𝐺 = 𝜌𝐷𝐺

𝜕

𝜕𝑥𝑖
𝑲 ∙

𝜕

𝜕𝑥𝑗
𝑐𝐺 + 𝑔𝑟𝑐𝑆𝑐 − 𝑑𝑔𝑐𝐺

Secretion from 

Synthetic SMCs

Production of 

Synthetic 

SMCs

𝛾
𝜕𝑐𝑆𝑆
𝜕𝑡

+
𝜕

𝜕𝑥𝑖
𝜌 𝑲 ∙ 𝑼 𝑗𝑐𝑆𝑆 = 𝜌𝐷𝑆𝑆

𝜕

𝜕𝑥𝑖
𝑲 ∙

𝜕

𝜕𝑥𝑗
𝑐𝑆𝑐𝑆 + 1 + 𝑒

−𝑆𝑟𝑐𝑐
𝑐𝑐,𝑚𝑎𝑥 𝑐𝑆𝑐

Degradation

𝑉𝑝𝑙𝑎𝑞𝑢𝑒 = 𝑐𝐹 ∗ 𝐹_𝑣𝑜𝑙𝑢𝑚𝑒 + 𝑐𝑆 ∗ 𝑆_𝑣𝑜𝑙𝑢𝑚𝑒 + 𝑐𝐺 ∗ 𝐺_𝑣𝑜𝑙𝑢𝑚𝑒



SMARTool’s plaque growth model
Model Parameters ARTREAT model SMARTool model

Time dependence Steady Transient

Substances in lumen
LDL, HDL
Monocytes

LDL, HDL
Monocytes

Substances in intima

LDL, HDL
Macrophages (Monocytes 

immediately differentiate to 
macrophages)

Oxidized LDL
Cytokines
Foam cells

LDL, HDL
Monocytes
Macrophages
Oxidized LDL (new approach)
Cytokines (new approach)
Foam cells (new approach)
Contractile SMCs
Synthetic SMCs
Collagen

Atherosclerotic plaque 
composition

Foam cells Foam cells
Synthetic SMCs
Collagen

Wall thickening No Yes



Results - Arterial lumen reduction



Results

Lumen and outer 
wall at baseline 

The resulted follow-up geometry 
after plaque growth modeling

ESS distribution (rainbow colormap) and 
plaque concentration (grey-scale colormap)



Results



Results



Stent deployment modeling



Stent deployment modeling

Karanasiou, G.S. In Silico Assessment of the effects of Material on Stent Deployment, 
Conference: 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering 
(BIBE), Oct 2017

* Tetrahedral lower-order 4-
node elements (SOLID285) and 
higher order 10-node 
elements (SOLID187) were 
selected for the stent and 
artery mesh.

3D artery 
reconstruction

Stent geometry 
reconstruction



Stent deployment modeling

 For all models, the curved areas of the stent links present higher stresses compared to the straight stent
segments. The high stresses in these regions could indicate a risk for potential failure during stent
expansion.

Fig. 1. The von Mises stress distribution. Maximum 
diameter achieved at 1.8MPa. 

Fig. 2. The von Mises arterial stress after unloading

 After unloading, all stents followed a similar pattern of inner arterial stresses with maxi von Mises
stresses at 0.65MPa for CoCr, and 0.62MPa for SS and PtCr stents.



Virtual stenting results

von Mises stresses 
for the models (a) 
with and (b) without 
the plaque 
component, 
respectively.

• Treatment decision support is
provided by performing virtual
stenting

• A novel FEM methodology
provides fast and accurate
simulation

• The proposed methodology is
validated using SMARTool’s data
(pre- and post- stenting)



Virtual stenting results



Virtual stenting results



Clinical use

A patient visits a practitioner/cardiologist and 
blood test is performed
The pre-imaging test of SMARTool provides a 
risk score
In case of high risk, the patient is going for CTCA 

The arterial geometries are used for 
treatment decision support based on 
virtual stent deployment

The CTCA is used for 3D reconstruction and 
assessment of the atherosclerotic status
The arterial geometries are used for diagnosis 
based on the SmartFFR 

Plaque growth modelling results combined 
with the phenotype and genotype of each 
patient provides prediction of the 
atherosclerosis evolution based on advanced 
machine learning algorithms

SMARTool takes into account the genotype and phenotype of each individual in order to 
provide personalized diagnosis, prognosis and prediction of coronary heart disease. 

1 3

2 4



Challenges in diagnosis and prognosis of 
atherosclerosis 

Detection of high risk 

regions of plaque 

progression

Personalized medicine
Use of patient’s genetic

profile in multi-scale models

Harmonization of large

cohorts. Accurate risk stratification

Patient-centered multi-scale models

Inclusion of patient’s environment info 

(social, diet, physical activity)

SMARTool faces these challenges and provides decision support solutions for the risk 
stratification, diagnosis and prognosis of cardiovascular disease


